Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Explore les possibilités de transformation numérique, les mégadonnées, l'analyse et les innovations technologiques dans le domaine des affaires et de la recherche.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.
Explore l'impact des événements solaires extrêmes sur la précision du positionnement GPS, révélant les erreurs et les vulnérabilités lors des tempêtes géomagnétiques et des éruptions solaires.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Explore la conception de mémoire cache, les succès, les ratés et les politiques d'expulsion dans les systèmes informatiques, en mettant l'accent sur la localité spatiale et temporelle.