Discute de la différenciation automatique, en mettant l'accent sur la différenciation en mode inverse pour optimiser les filtres de couche convolutifs par descente de gradient.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Explore les bases des réseaux neuraux, le problème XOR, la classification et les applications pratiques comme la prévision des données météorologiques.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Explore le développement historique et la formation de perceptrons multicouches, en mettant l'accent sur l'algorithme de rétropropagation et la conception de fonctionnalités.
Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.
Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.