Optimisateur System-R: Optimisation des requêtes et estimation des coûts
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute de l'optimisation de joint accéléré GPU efficace pour les requêtes complexes, visant à améliorer les temps d'optimisation et la qualité du plan heuristique.
Couvre efficacement l'optimisation de joint accéléré GPU pour les requêtes complexes, en se concentrant sur l'amélioration des temps d'optimisation et de la qualité du plan heuristique.
Explore l'optimisation des requêtes basée sur les coûts dans les systèmes de base de données, couvrant l'estimation des coûts, l'estimation de la sélectivité, et rejoindre la cardinalité.
Explore l'optimisation des requêtes heuristiques, les commandes de jointure et les stratégies d'estimation des coûts dans les systèmes de base de données.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Explore le traitement des requêtes par blocs dans les bases de données, mettant l'accent sur les défis de matérialisation et l'exécution optimisée pour les applications à forte intensité de données.
Couvre l'optimisation des requêtes relationnelles, y compris les plans de requêtes logiques et physiques, l'estimation des coûts, les équivalences et la stratégie du système R.