Introduit des opérateurs proximaux et des méthodes de gradient conditionnel pour les problèmes convexes composites de minimisation dans l'optimisation des données.
Sur Convex Optimization couvre l'organisation des cours, les problèmes d'optimisation mathématique, les concepts de solution et les méthodes d'optimisation.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Couvre la régression polynôme, la descente en gradient, le surajustement, le sous-ajustement, la régularisation et la mise à l'échelle des caractéristiques dans les algorithmes d'optimisation.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Couvre l'optimalité des taux de convergence dans les méthodes de descente en gradient accéléré et stochastique pour les problèmes d'optimisation non convexes.
Explore diverses approches de régularisation, y compris la quasi-norme L0 et la méthode Lasso, en discutant de la sélection des variables et des algorithmes efficaces pour l'optimisation.