Théorie de l'apprentissage statistique: Conclusions sur l'apprentissage profond
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur le transfert de style photographique, montrant comment les algorithmes peuvent transformer les images pour imiter différents styles et améliorer les photos.
Explore la modélisation d'espaces d'entrée continus dans l'apprentissage par renforcement à l'aide de réseaux de neurones et de fonctions de base radiales.
Explore les réseaux neuronaux apprenant par récompense, les structures acteur-critique, la plasticité synaptique et le rôle de la dopamine dans les changements synaptiques.
Explore l’apprentissage profond avec des images Instagram, comprend la perception des aliments, l’obésité et la santé mentale, et discute de l’impact des images des médias sociaux et des plateformes éphémères comme Snapchat.
Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.
Plonge dans les filtres convolutifs comme un biais inductif pour les images dans les réseaux neuronaux, en mettant l'accent sur l'indépendance de la traduction et des détecteurs de caractéristiques locales.