Théorie de l'apprentissage statistique: Conclusions sur l'apprentissage profond
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le concept de biais inductif dans l'apprentissage automatique, en mettant l'accent sur le rôle des connaissances antérieures dans la conception de réseaux neuronaux efficaces.
Explique le gradient de politique pour un neurone unique, y compris la politique d'écriture, l'utilisation de la fonction logistique, et le calcul du gradient.
Explore l'apprentissage auto-supervisé, l'apprentissage par transfert, les tâches de prédiction SSL, l'apprentissage des fonctionnalités, les rotations d'images, l'apprentissage contrasté et les apprenants en vision.
Introduit FIGLearn, une méthode d'apprentissage des filtres et des graphiques utilisant un transport optimal, surperformant l'état actuel de la technique.