Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.