Modélisation des simulations et des expériences biomoléculaires
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore l'approche de distribution quasi-stationnaire dans la modélisation de la dynamique moléculaire, couvrant la dynamique de Langevin, la métastabilité et les modèles cinétiques de Monte Carlo.
Explore les simulations de dynamique moléculaire intégrale ab initio path, en se concentrant sur les effets quantiques nucléaires et leur impact sur divers systèmes.
Couvre la simulation de la dynamique moléculaire de l'argon liquide à l'aide du potentiel de Lennard-Jones et se concentre sur l'équilibre et la distribution des vitesses à l'équilibre.
Explore les surfaces d'énergie potentielles dans les simulations de dynamique moléculaire et l'utilisation de méthodes mécaniques quantiques / moléculaires mixtes.
Explore l'apprentissage automatique atomistique, intégrant les principes physiques dans les modèles pour prédire avec précision les propriétés moléculaires.
Explore la méthodologie MODNet pour les prévisions des biens matériels, en mettant l'accent sur la sélection des caractéristiques et l'apprentissage supervisé.