Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les arbres de décision dans l'apprentissage automatique, leur flexibilité, les critères d'impureté et introduit des méthodes de renforcement comme Adaboost.
Explique l'algorithme Adaboost pour construire des classificateurs forts à partir de faibles, en mettant l'accent sur l'amélioration des méthodes et la détection des visages.
Explore les forêts aléatoires en tant que méthode d'ensemble puissante pour la classification, en discutant des stratégies d'ensachage, d'empilage, de renforcement et d'échantillonnage.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.