Réseaux de neurones : modèles hiérarchiques et taxis odorants
Séances de cours associées (71)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Discute des défis liés à la construction de réseaux neuraux physiques, en mettant l'accent sur la profondeur, les connexions et la capacité de formation.
Explore les bases des réseaux neuraux, le problème XOR, la classification et les applications pratiques comme la prévision des données météorologiques.
Couvre les fondamentaux des signaux neuraux et du traitement des signaux, en mettant l'accent sur la modélisation et la simulation des systèmes neuraux.