Optimisation des taux de convergence: descente progressive accélérée
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Couvre les méthodes d'optimisation, les garanties de convergence, les compromis et les techniques de réduction de la variance en optimisation numérique.
Couvre les méthodes de solution pour réduire au minimum les convexes composites et explore des exemples comme les moindres carrés régularisés et la récupération de phase.
Couvre l'optimalité des taux de convergence dans les méthodes de descente en gradient accéléré et stochastique pour les problèmes d'optimisation non convexes.
Explore les méthodes de gradient adaptatif comme AdaGrad, AcceleGrad et UniXGrad, en se concentrant sur leurs taux d'adaptation et de convergence locaux.