Explore les données sur la consommation d'eau à Genève, y compris les graphiques sur la consommation et les pertes, les ensembles de données disponibles et les phases de traitement des données.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.
Explore les concepts avancés de traitement des flux de données à l'aide de données en temps réel sur les trains des chemins de fer néerlandais et de données historiques des chemins de fer fédéraux suisses.
Couvre la mise en œuvre d'un système d'information pour la gestion des trajectoires de taxi, y compris le filtrage des données, la création de modèles de trajectoire et la comparaison des performances.
Explore la gestion des fichiers et les exceptions dans la programmation Python, couvrant la lecture, l'écriture et les stratégies de gestion des erreurs.
Explore la déanonymisation à l'aide d'ensembles de données publics de Netflix, en mettant l'accent sur l'appariement des utilisateurs et l'évaluation des films en fonction des cotes.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.