Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Discute de l'application des méthodes de Monte Carlo dans l'analyse du rayonnement thermique, en se concentrant sur les fonctions de probabilité et les techniques d'intégration numérique.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Couvre les facteurs de vision spéculaire, l'échange radiatif, le transfert d'énergie et les méthodes d'intégration numérique dans le rayonnement thermique.