Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.
Explore les contraintes, l'efficacité et la complexité de l'algèbre linéaire, en mettant l'accent sur la convexité et la complexité du pire des cas dans l'analyse algorithmique.
Explore l'optimisation de la programmation linéaire avec des contraintes, l'algorithme de Dijkstra et les formulations LP pour trouver des solutions réalisables.
Introduit un algorithme amélioré pour les jeux de parité à trois couleurs, en mettant l'accent sur les mesures de progrès, l'accélération et la rapidité pratique.
Explore la maximisation de la diversité dans la sélection des documents, la détermination des cliques de graphes, les théorèmes sur le type négatif et l'optimisation convexe.