Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Discute des différences finies et des éléments finis, en se concentrant sur la formulation variationnelle et les méthodes numériques dans les applications d'ingénierie.
Explore la monotonie inverse dans les méthodes numériques pour les équations différentielles, en mettant l'accent sur les critères de stabilité et de convergence.