Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.
Explore l'analyse des données de neurosciences, en mettant l'accent sur les données structurées, les outils de calcul et la tendance des neurosciences de calcul en tant que service.
Explore la classification des neurones, soulignant l'importance de comprendre la complexité du cerveau et les défis dans la définition des types de cellules.
Couvre l'activité spontanée du réseau cérébral, la simulation neuronale et la validation, soulignant l'importance des conditions in-vitro et in-vivo pour une modélisation précise du réseau.
Explore le regroupement dans les réseaux de neurosciences silico, la définition de l'espace et le traitement des données rares pour reconstruire les régions du cerveau.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Couvre les souris transgéniques utilisant les lignes de Cre et l'optogénétique, explorant les techniques de manipulation des cellules neurales et l'expression génétique spécifique à la région du cerveau.