Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Couvre l'expansion des fonctionnalités polynomiales, les méthodes du noyau, les représentations des données, la normalisation et la gestion des données déséquilibrées dans l'apprentissage automatique.
Discute des méthodes du noyau, en se concentrant sur les surajustements, la sélection des modèles et les fonctions du noyau dans l'apprentissage automatique.
Couvre le concept de régression du noyau et rend les données linéairement séparables en ajoutant des fonctionnalités et en utilisant des méthodes locales.
Explore les méthodes du noyau pour les surfaces de séparation non linéaires à l'aide de noyaux polynômes et gaussiens dans les algorithmes Perceptron et SVM.