Explore l'apprentissage de la fonction du noyau en optimisation convexe, en se concentrant sur la prédiction des sorties à l'aide d'un classificateur linéaire et en sélectionnant les fonctions optimales du noyau par validation croisée.
Discute des méthodes du noyau dans l'apprentissage automatique, en se concentrant sur la régression du noyau et les machines vectorielles de support, y compris leurs formulations et applications.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.