Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la maximisation des marges pour une meilleure classification à l'aide de machines vectorielles de support et l'importance de choisir le bon paramètre.
Explore les machines vectorielles de support, maximisant la marge pour une classification robuste et la transition vers la SVM logicielle pour les données séparables non linéairement.
Explore les méthodes du noyau pour les surfaces de séparation non linéaires à l'aide de noyaux polynômes et gaussiens dans les algorithmes Perceptron et SVM.
Explore Support Vector Machines, couvrant la marge ferme, la marge souple, la perte de charnière, la comparaison des risques et la perte de charnière quadratique.
Explore l'apprentissage de la solution du noyau en optimisation convexe, en se concentrant sur la prédiction des sorties à l'aide d'un classificateur linéaire et en abordant les problèmes numériques possibles.
Explique la machine vectorielle de soutien et la régression logistique pour les tâches de classification, en mettant l'accent sur la maximisation de la marge et la minimisation des risques.