Séquence aux modèles de séquence: Aperçu et mécanismes d'attention
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Déplacez-vous dans l'architecture Transformer, l'auto-attention et les stratégies de formation pour la traduction automatique et la reconnaissance d'image.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Explore l'évolution des mécanismes d'attention vers les transformateurs dans les NLP modernes, en soulignant l'importance de l'auto-attention et de l'attention croisée.
Explore la prédiction des réactions chimiques à l'aide de modèles générateurs et de transformateurs moléculaires, soulignant l'importance du traitement du langage moléculaire et de la stéréochimie.
Explore les propriétés théoriques et la puissance pratique des réseaux neuronaux récurrents, y compris leur relation avec les machines d'état et l'exhaustivité de Turing.
Discute de l'impact des innovations TIC dans les interventions d'urgence et de l'importance de donner la priorité aux communautés locales dans la gestion des catastrophes.