Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Explore le rôle du calcul dans les mathématiques de données, en mettant l'accent sur les méthodes itératives, l'optimisation, les estimateurs et les principes d'ascendance.
Introduit des opérateurs proximaux, des méthodes de gradient et une optimisation contrainte, explorant leur convergence et leurs applications pratiques.
Explore la descente de gradient stochastique, couvrant les taux de convergence, l'accélération et les applications pratiques dans les problèmes d'optimisation.
Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.