Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.
Explore Transformers dans la vision informatique, se concentrant sur l'architecture 'Attention est tout ce dont vous avez besoin' et ses applications dans les tâches visuelles.
Présente BYOL, une méthode d'apprentissage auto-supervisée de la représentation d'images permettant d'obtenir des résultats de pointe sans paires négatives.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
Couvre la dérivation de la formule de descente de gradient stochastique pour un perceptron simple et explore l'interprétation géométrique de la classification.
Explore les réseaux neuronaux convolutifs, couvrant la convolution, la corrélation croisée, la mise en commun maximale, la structure des couches et des exemples tels que LeNet5 et AlexNet.
Couvre la navigation bio-inspirée, les réseaux graphes convolutionnels, et des architectures robustes de transformateur de vision pour l'intelligence visuelle.