Couvre l'estimation, le rétrécissement et la pénalisation des statistiques pour la science des données, soulignant l'importance d'équilibrer le biais et la variance dans l'estimation des modèles.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Explore l'hétéroscédasticité et l'autocorrélation en économétrie, couvrant les implications, les applications, les méthodes de test et les conséquences des tests d'hypothèses.