Couvre la détection des bords et des contours dans les images, y compris les méthodes basées sur les gradients, l'opérateur laplacien, et des méthodes plus complexes.
Introduit les bases de la détection de bord, y compris la mesure du contraste, les images de gradient, l'interprétation de Fourier, les fonctions gaussiennes, le détecteur de bord Canny et les applications industrielles.
Explore les techniques de délimitation, y compris la transformation de Hough, l'orientation du gradient et la détection de forme, en soulignant l'importance de combiner des techniques basées sur des graphiques et l'apprentissage automatique.
Introduit des techniques de traitement d'image en Python, en se concentrant sur les opérations de manipulation et de convolution à l'aide de NumPy et Pillow.
Se penche sur le choix d'une taille de caractéristique appropriée pour l'analyse d'images dans les sciences de la vie, présentant une règle de pouce pour définir la taille de l'objet en pixels.
Couvre le potentiel et les limites des techniques de vectorialisation automatique pour numériser des objets à partir de documents ou d'images numérisés.
Couvre les techniques de reconstruction d'images en couleur à l'aide de la détection optique et de l'intelligence artificielle pour améliorer la qualité de l'image et réduire le bruit.