Explore la méthodologie de conception expérimentale, y compris les plans classiques, la méthode simplex et l'analyse canonique pour les modèles linéaires et quadratiques.
Explore la conception de la surface de réponse, en mettant l'accent sur le manque d'analyse de l'ajustement et de modèles quadratiques, avec des exemples pratiques dans Matlab.
Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.