Explore la méthode de classification la plus proche du voisin, en discutant de ses limites dans les espaces de grande dimension et de l'importance de la corrélation spatiale pour des prédictions efficaces.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore les transformateurs et les MLP pour la classification des documents, en mettant l'accent sur leurs avantages par rapport aux méthodes traditionnelles.