Explique comment les robots manipulent des objets en utilisant des instructions en langage naturel et intègre des modèles de langage de vision pour améliorer les performances.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
Explore les défis et les opportunités dans la perception robotique basée sur la vision, couvrant des sujets tels que SLAM, la reconnaissance des lieux, les caméras d'événements et l'intelligence visuelle collaborative.
Explore les systèmes d'imagerie à l'information physique, y compris l'imagerie sans lentille, l'apprentissage profond pour les défis d'imagerie, et le développement de modèles de bruit pour les vidéos à faible luminosité.
S'insère dans la dynamique de l'apprentissage collectif avec exploitation de la similitude, couvrant l'apprentissage structuré, les cadres d'adaptation, la modélisation, la simulation et les résultats expérimentaux.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Présente le travail avec les surfaces, les polysurfaces et les solides dans Rhino, couvrant le rendu, l'édition de matériel et la création de maillage.
Couvre les tendances dans les technologies de caméras CCD et CMOS, en se concentrant sur l'intégration, la taille des pixels et les avancées dans les systèmes autofocus.
Introduit un système de mesure 3D « professionnel » pour l'analyse des pierres et l'extraction des caractéristiques à l'aide de la photogrammétrie stéréo et des technologies de lumière structurée.
Se concentre sur l'application pratique de la corrélation d'images numériques pour les ingénieurs civils, couvrant la mesure des champs de déplacement et le calcul des champs de contrainte.