Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les règles d'association minière, se concentrant sur les algorithmes de croissance d'Apriori et de FP pour trouver des itemset fréquents et extraire les règles efficacement.
Explore les règles d'association dans l'extraction de données, y compris les mesures, les techniques et les algorithmes pour l'extraction efficace des règles.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Introduit l'extraction de règles d'association, couvrant le support, la confiance, l'algorithme Apriori et la croissance des FP pour la découverte fréquente d'éléments.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Explore le dimensionnement des réservoirs et des barrages en utilisant des courbes d'écoulement cumulatives et le dimensionnement des réservoirs pour les périodes sèches et pluvieuses.