Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Explore les techniques d'apprentissage non supervisées pour réduire les dimensions des données, en mettant l'accent sur l'APC, l'ADL et l'APC du noyau.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.