Couvre la pensée algorithmique, la programmation Python, les méthodes numériques et les concepts informatiques essentiels pour l'informatique scientifique.
S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Discute des défis et de l'avenir de l'informatique neuromorphe, en comparant les ordinateurs numériques et le matériel spécialisé, comme SpiNNaker et NEST, tout en explorant la plate-forme informatique neuromorphe du projet Human Brain.
Explore l'utilisation d'extensions visuelles, telles que la réalité virtuelle et la réalité augmentée, pour améliorer l'efficacité et la communication sur le lieu de travail.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Explore le déchiffrage des empreintes digitales de l'interaction protéine-protéine à l'aide d'un apprentissage en profondeur géométrique et les défis de la conception de l'interaction protéine-protéine computationnelle.