Introduit des intégrations de mots, expliquant comment ils capturent les significations des mots en fonction du contexte et de leurs applications dans les tâches de traitement du langage naturel.
Introduit le traitement du langage naturel (NLP) et ses applications, couvrant la tokenisation, l'apprentissage automatique, l'analyse du sentiment et les applications NLP suisses.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Explore l'analyse du modèle neuronal en PNL, couvrant les études d'évaluation, de sondage et d'ablation pour comprendre le comportement et l'interprétabilité du modèle.
Présente des modèles de langage classiques, leurs applications et des concepts fondamentaux tels que la modélisation et les mesures d'évaluation basées sur le nombre.
Explore les mots, les jetons et les modèles de langage en PNL, couvrant les défis liés à leur définition, à l'utilisation du lexique, aux n-grammes et à l'estimation des probabilités.