Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris les distributions, les propriétés et les attentes des variables aléatoires.
Discute de l'inférence bayésienne pour la moyenne d'une distribution gaussienne avec variance connue, couvrant la moyenne postérieure, la variance et l'estimateur MAP.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Déplacez-vous dans les probabilités, les statistiques, les paradoxes et les variables aléatoires, montrant leurs applications et propriétés du monde réel.
Déplacez-vous dans les probabilités, les statistiques, les expériences aléatoires et l'inférence statistique, avec des exemples pratiques et des idées.