Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore les méthodes d'optimisation primaire-duelle, se concentrant sur les approches lagrangiennes et diverses méthodes comme la pénalité, la lagrangien augmentée, et les techniques de fractionnement.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.