Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.
Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre les concepts fondamentaux de probabilité et de statistiques, en se concentrant sur l'analyse des données, la représentation graphique et les applications pratiques.