Explore l'inférence statistique pour les données de banditisme, en mettant l'accent sur les actions de traitement personnalisées et les défis des estimateurs standards.
Explore la causalité, la corrélation et les corrélations fallacieuses dans l'apprentissage automatique, en mettant l'accent sur l'atténuation des biais et l'invariance entre les environnements.
Explore l'inférence causale en épidémiologie, en mettant l'accent sur l'impact de la COVID-19 sur la naissance prématurée et en perfectionnant les stratégies de traitement du cancer de la prostate.
Enquêter sur la façon dont le mois de naissance influence le succès des athlètes, analyser l'ensemble de données des athlètes japonais pour explorer les tendances dans les dates de naissance et les professions.