Couvre le problème de Cauchy dans les équations différentielles, en se concentrant sur les conditions initiales et leur impact sur lunicité de la solution.
Fournit un aperçu des équations différentielles, de leurs propriétés et des méthodes pour trouver des solutions à travers divers exemples et représentations graphiques.
Couvre la résolution numérique d'un problème de Cauchy en utilisant la séparation des variables et discute des conditions de l'intervalle de définition de la solution.
Couvre le caractère unique des solutions dans les équations différentielles, en se concentrant sur le théorème de Cauchy-Lipschitz et ses implications pour les solutions locales et globales.