Couvre les configurations d'équilibre MHD, y compris les concepts de tokamak et de stellarator, les équations d'équilibre de force et les facteurs de sécurité.
Explore les caractéristiques du plasma brûlant, le rôle des ions rapides, les pertes, les modes MHD, la turbulence, l'interaction des ondes d'Alfvén et la stabilité des brûlures.
Couvre la fusion nucléaire en tant que source d'énergie durable et son potentiel pour créer des étoiles sur Terre grâce à la recherche et à la technologie de pointe.
Plonge dans la physique des plasmas, l'énergie de fusion, la turbulence, le flux de chaleur et les simulations numériques pour optimiser le fonctionnement des réacteurs de fusion.
Explore l'utilisation d'ondes pour le chauffage et l'entraînement du courant dans les tokamaks, en mettant l'accent sur les ondes ICRH et LH, leurs mécanismes et leurs caractéristiques d'antenne.
Explore les exigences du premier mur d'un réacteur de fusion et les avantages du concept de détournement, y compris les configurations et les défis innovants.
Explore les principes de la fusion inertielle et magnétique, en discutant de l'équilibre énergétique, des défis et des progrès vers la combustion du plasma.
Explore Electron Cyclotron Résonance Chauffage pour le chauffage plasma et l'entraînement de courant, se concentrant sur les résonances de particules d'onde, les composants du système ECRH, et les applications dans le tokamak TCV et ITER.
Explore les stellarators comme des alternatives aux tokamaks, en discutant des configurations magnétiques 3D, des avantages et des inconvénients, de l'histoire et d'autres concepts de confinement.