Couvre la transformée de Fourier sur l'espace Schwartz et ses propriétés, y compris la continuité et la linéarité, ainsi que la densité des fonctions soutenues de manière compacte et lisse.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore les fonctions t-périodiques de la série Fourier, en discutant des intervalles, des propositions et des changements variables pour le calcul des coefficients et la convergence des séries.