Charge cognitive : comprendre la mémoire et les erreurs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute de l'influence des connaissances antérieures sur l'apprentissage, couvrant l'organisation, la pratique, la mémoire et des stratégies efficaces de compréhension et de rétention.
Explore comment les oscillations corticales lentes dans le cortex frontal coordonnent les réseaux cérébraux et impactent les processus de mémoire, en mettant l'accent sur le contrôle cognitif et le vieillissement en bonne santé.
Explore l'intersection entre les neurosciences et l'apprentissage automatique, en discutant de l'apprentissage profond, de l'apprentissage par renforcement, des systèmes de mémoire et de l'avenir du pont entre l'intelligence machine et l'intelligence humaine.
Se penche sur l'utilisation de la mémoire spatiale dans les agents RL pour les tâches de navigation labyrinthe, montrant des performances améliorées avec des repères visuels, mais des résultats incohérents dans le choix du chemin.