L'essentiel de la science des données: Pandas, Numpy, Matplotlib
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente des outils collaboratifs de science des données comme les carnets Jupyter, Docker et Git, mettant l'accent sur la version des données et la conteneurisation.
Présente les bases de la programmation LabVIEW, couvrant l'interface utilisateur, les types de données, la gestion des fichiers et la gestion des erreurs.
Introduit les bases de Numpy, une bibliothèque de calcul numérique en Python, couvrant les avantages, la disposition de la mémoire, les opérations et les fonctions d'algèbre linéaire.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.