Explore le contrôle du comportement chez les animaux et les robots, couvrant les perspectives historiques, l'activation des neurones, le modèle de Drosophila, les techniques avancées et l'organisation de mini-projets.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Déplacez-vous dans le Big Data en neurosciences, en analysant les grands ensembles de données et en abordant les défis de l'organisation, de la normalisation, de l'intégration et de la visualisation des données.
Se penche sur la simulation de la dynamique du réseau dans les neurosciences silico, couvrant l'activité spontanée et évoquée, les simulations in-vitro et in-vivo, et l'analyse de sensibilité.
Couvre l'informatique neuromorphe, les défis dans l'informatique ternaire et binaire, les simulations matérielles du cerveau, et les nouveaux matériaux pour les cellules cérébrales artificielles.
Couvre les souris transgéniques utilisant les lignes de Cre et l'optogénétique, explorant les techniques de manipulation des cellules neurales et l'expression génétique spécifique à la région du cerveau.