Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la régression multilinéaire pour l'optimisation de la conception et l'orthogonalité, couvrant le travail d'équipe, les résumés, les modèles linéaires et quadratiques, ANOVA et les structures d'alias.
Explore Kernel Ridge Regression, le Kernel Trick, Représenter Theorem, dispose d'espaces, matrice du noyau, prédiction avec les noyaux, et la construction de nouveaux noyaux.
Explore les filtres de Kalman linéarisés et étendus, illustrant leur application dans les systèmes non linéaires et l'estimation des paramètres inconnus.
Explore l'importance de la causalité pour l'apprentissage machine robuste, couvrant les ensembles de données idéaux, les problèmes de données manquants, les modèles graphiques et les modèles d'interférence.
Introduit la cartographie topographique du cerveau, les voies auditives, l'organisation du cortex moteur et le modèle linéaire général pour l'analyse des données IRMf.