Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre les concepts de traitement de flux de données, en se concentrant sur l'intégration Apache Kafka et Spark Streaming, la gestion du temps des événements et les directives de mise en œuvre du projet.
Couvre les bases du traitement des flux de données, y compris des outils comme Apache Storm et Kafka, des concepts clés tels que le temps d'événement et les opérations de fenêtre, et les défis du traitement des flux.
Explore la combinaison de données au repos avec des données en mouvement, en mettant l'accent sur les complexités de l'architecture Lambda et l'évaluation de la qualité des flux et des lots.
Couvre le traitement de flux de données avec Apache Kafka et Spark, y compris le temps d'événement vs le temps de traitement, les opérations de traitement de flux, et les jointures de flux.
Explore le temps de l'événement par rapport au temps de traitement, les opérations de traitement de flux, les jointures de flux et le traitement des données en retard ou hors-commande dans le traitement de flux de données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Couvre les fondamentaux du traitement des flux de données, y compris les informations en temps réel, les applications de l'industrie, et les exercices pratiques sur Kafka et Spark Streaming.