Explore les défis des études observationnelles, en soulignant l'importance de la randomisation et de l'analyse de sensibilité pour tirer des conclusions valables à partir de «données trouvées».
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Explore l'importance de la randomisation dans la spectrométrie de masse des protéines et la protéomique, en soulignant son rôle dans la minimisation des biais et la garantie de la validité de la recherche.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Discute de l'impact des séance de courss en direct sur la performance et l'assiduité des étudiants, révélant des effets variés en fonction des niveaux de capacité des étudiants.