Couvre les méthodes pour définir la tempête de conception, la distribution empirique des maxima de pluie, la distribution de Gumbel, et les relations intensité-durée-fréquence.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.