Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Explore l'analyse de convergence de la méthode de Newton pour résoudre les équations non linéaires, en discutant des propriétés de convergence linéaire et quadratique.
Explore la convergence de la méthode de Newton pour résoudre les équations non linéaires et l'importance de choisir les suppositions initiales appropriées.
Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.