Séance de cours

Méthode du point fixe : équations non linéaires

Séances de cours associées (31)
Analyse numérique : la méthode de Newton
Explore la méthode de Newton pour trouver les racines des équations non linéaires et son interprétation comme méthode de second ordre.
Analyse numérique : Équations non linéaires
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.
Méthode de Newton : Convergence et critères
Explore la méthode de Newton pour les équations non linéaires, en discutant des critères de convergence et des conditions d'arrêt.
Équations non linéaires : Convergence de la méthode des points fixes
Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Équations non linéaires : méthodes et convergence
Explore les méthodes de point fixe d'ordre élevé et la méthode Newton-Raphson pour résoudre les équations non linéaires.
Méthodes d'ordre supérieur: Techniques itératives
Couvre les méthodes d'ordre supérieur pour résoudre les équations itérativement, y compris les méthodes de points fixes et la méthode de Newton.
Équations non linéaires: méthodes à points fixes, ordre élevé
Couvre les méthodes à point fixe et les techniques d'ordre élevé pour résoudre les équations non linéaires.
Méthode Picard: Technique itérative à point fixe
Couvre la méthode Picard pour résoudre des équations non linéaires en utilisant l'itération à point fixe.
Équations non linéaires : méthodes et applications
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.
Systèmes dynamiques : cartes et stabilité
Explore les cartes unidimensionnelles, les solutions périodiques et les bifurcations dans les systèmes dynamiques.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.