Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Explore Kernel Principal Component Analysis, une méthode non linéaire utilisant des noyaux pour la résolution linéaire de problèmes et la réduction des dimensions.
Explore la réduction des dimensions linéaires grâce à la PCA, à la maximisation de la variance et à des applications réelles telles que l'analyse des données médicales.
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Les couvertures comportent des méthodes d'extraction, de regroupement et de classification pour les ensembles de données de grande dimension et l'analyse comportementale utilisant PCA, t-SNE, k-means, GMM et divers algorithmes de classification.