Couvre les mécanismes de protection de la vie privée, leurs avantages et leurs inconvénients, et leur application dans divers scénarios, en mettant l'accent sur la protection de la vie privée en tant que bien de sécurité et son importance dans la société.
Explore les mécanismes de publication des données qui préservent la vie privée, y compris l'anonymat k et la confidentialité différentielle, ainsi que leurs applications pratiques et leurs défis.
Se penche sur les compromis de confidentialité différentielle, l'impact disparate et les attaques de confidentialité basées sur l'apprentissage automatique.
Explore les risques liés à la protection de la vie privée dans la publication des données, les tentatives ratées de désidentification et l'utilisation de données synthétiques pour la protection de la vie privée.
Couvre les lois suisses sur la protection des données, y compris la loi fédérale sur la protection des données et les rôles définis dans la législation.
Explore l'apprentissage automatique fédéré et la confidentialité différentielle dans l'apprentissage automatique, en discutant des attaques, des défenses et des défis.
Explore les défis et les vulnérabilités de la technologie de traçage numérique des contacts, en se concentrant sur l’application SwissCovid et ses implications.
Explore les principes de confidentialité par conception, la minimisation des données, la minimisation de la confiance et l'étude de cas de l'application SwissCovid.