Se concentre sur l'assemblage des éléments constitutifs du réseau neuronal et sur la gestion de la rareté des données à l'aide de diverses stratégies et hypothèses.
Explore les bases de la neuroimagerie, les échelles du réseau cérébral, la connectivité, l'histoire et la physique, soulignant l'importance de comprendre les données à différentes échelles.
Explore le regroupement dans les réseaux de neurosciences silico, la définition de l'espace et le traitement des données rares pour reconstruire les régions du cerveau.
Explore la modélisation de l'activité électrique du neurone, y compris les canaux ioniques et les concentrations, l'équation de Nernst et le potentiel de repos.
Couvre l'activité spontanée du réseau cérébral, la simulation neuronale et la validation, soulignant l'importance des conditions in-vitro et in-vivo pour une modélisation précise du réseau.
Explore l'analyse des données de neurosciences, en mettant l'accent sur les données structurées, les outils de calcul et la tendance des neurosciences de calcul en tant que service.